Phänologie

Ein Schulprojekt zur Untersuchung der Wirkung der Jahreszeiten auf biologische Zyklen
Vorwort .. 1
 Pflanzenphänologische Beobachtungen in den Schulen .. 1

Einleitung ... 3
 Was ist Phänologie? .. 3
 Phänologische Beobachtungen an Pflanzen ... 3
 Welche Faktoren beeinflussen die phänologische Entwicklung von Pflanzen? 4
 Pflanzenphänologie als Wissenschaft .. 4
 Umweltmonitoring ... 5
 Pflanzenphänologie der Schweiz .. 5
 Nationale und internationale Netze .. 5

Laubbäume im Wandel der Jahreszeiten ... 7
 Knospung, Blattentwicklung, Blattverfärbung und Blattfall – Phänologische
 Beobachtungen im Frühling und Herbst ... 7
 Und der Klimawandel? ... 9

Phänologische Beobachtungen im Schulunterricht .. 10

Phänologische Beobachtungen im Schulunterricht .. 11
 Grundsätzliche Anregungen und Denkansätze, Bildungsrelevanz 11
 Einstieg ins naturwissenschaftliche Denken und Arbeiten 12

Was ist Knospung? .. 15

Protokoll Knospung .. 16
 Wer kann und soll das Protokoll Knospung durchführen? 17
 Auswahl des Messortes .. 17
 Auswahl eines oder mehrerer Bäume ... 18
 Vorgehen zur Beobachtung der Knospung .. 19
 Leben Sie in einem Gebiet, in welchem noch Schnee liegt? 19
 Wie verwendet die Wissenschaft diese Daten? ... 20

Beobachtungsanleitung zur Knospung .. 21
 Feldanleitung zur Einrichtung des Messtandortes .. 21
 Datenblatt Standortbeschreibung Knospung .. 22
 Feldanleitung für die Beobachtungen der Knospung .. 23
 Datenblatt Beobachtungen der Knospung ... 24
 Häufig gestellte Fragen zum Protokoll Knospung .. 25

Was ist Blattentwicklung? .. 27

Protokoll Blattentwicklung ... 28
 Vorgehen bei der Auswahl des Messortes Blattentwicklung und
 Blattverfärbung/Blattfall .. 29
 Informationen für die Lehrkräfte .. 30
 Häufigkeit der Beobachtungen .. 30
 Fragen für weiterführende Untersuchungen ... 31
Messenleitung Blattentwicklung ...33
 Feldanleitung zum Einrichten des Messstandortes33
 Datenblatt Standortbeschreibung Blattentwicklung34
 Feldanleitung für die Messungen zur Blattentwicklung35
 Datenblatt Messungen Blattentwicklung ..36
 Häufig gestellte Fragen zum Protokoll Blattentwicklung39

Was sind Blattverfärbung und Blattfall? ..41

Protokoll Blattverfärbung/Blattfall ...42
 Informationen für die Lehrkräfte ...43
 Fragen für weiterführende Untersuchungen ...43

Messenleitung Blattverfärbung/Blattfall ..45
 Feldanleitung zum Einrichten des Messstandortes45
 Standortbeschreibung Blattverfärbung/Blattfall ...46
 Feldanleitung für die Beobachtungen Blattverfärbung/Blattfall47
 Häufig gestellte Fragen zu Blattverfärbung/Blattfall47
 Datenblatt Blattfall/Blattentwicklung ...48

Literaturangaben ...51

Impressum
GLOBE Schweiz, 1. Auflage Oktober 2005
Erarbeitung und Übersetzungen: Landeskoordination Schweiz, Juliette Vogel
Fotos: Robert Brügger, Seiten 9, 13, 25; andere: Juliette Vogel
Layout: Christian Jaberg, Solothurn
Vorwort

Pflanzenphänologische Beobachtungen in den Schulen

Die Pflanzenphänologie beschäftigt sich mit den jahreszeitlich periodisch wiederkehrenden Wachstums- und Entwicklungserscheinungen der Pflanzen. Beobachtet werden die Eintrittstermine der so genannten phänologischen Phasen (Phänophasen) wie Blattentfaltung, Blüte, Fruchtreife, Blattverfärbung und Blattfall.

Ich möchte Sie ermuntern mit Ihren Schüler/innen dieses Experiment zu wagen.

Dr. Claudio Defila
Leiter Bio- und Umweltmeteorologie
MeteoSchweiz
Einleitung

Der erste Teil dieser Unterlagen zur Phänologie ist als Information für Lehrpersonen oder für Schülerinnen und Schüler höherer Schulstufen gedacht. Der zweite Teil beinhaltet die Protokolle (Arbeitsanleitungen), die sowohl an die Lehrpersonen wie auch an die Schülerinnen und Schüler gerichtet sind. Phänologische Untersuchungen sind grundsätzlich für alle Schulstufen geeignet.

Besonders danken möchten wir Herrn Dr. C. Defila von MeteoSchweiz und Herrn Dr. R. Brügger von Phenotop des Geografischen Instituts der Universität Bern. Ihre fachliche Begutachtung der Einführung ins Thema und das Einbringen ihres Wissens dient dem GLOBE Projekt Phänologie sehr. Die Zusammenarbeit von Schule und Forschung in diesem Rahmen liegt ganz im Sinne des internationalen Schulprogramms GLOBE.

Landeskoordination GLOBE Schweiz, August 2005

Was ist Phänologie?

Phänologische Beobachtungen an Pflanzen

Interessante Aspekte und Informationen zur Pflanzenphänologie lassen sich in der Standardanleitung des phänologischen Beobachtungsnetzes in der Schweiz von Brügger & Vassella, Pflanzen im Wandel der Jahreszeiten, 2003, GEOGRAPHICA BERNENSA, finden:

«In vielen Bauernregeln werden von Generation zu Generation Erfahrungen über Zusammenhänge zwischen Pflanzenwachstum und Umwelteinflüssen weitergegeben. Darin werden nicht nur Naturerscheinungen beschrieben, sondern auch Regeln für die Zukunft abgeleitet, die auf Erfahrungen in der Vergangenheit beruhen und der Wetter- und Ernteprognose dienen. Mit dem Aufschreiben der Kalendertage, an denen sich auffällige, sich wiederholende Naturerscheinungen ereignen, begann die Phänologie als Wissenschaft. »
In den im oberen Abschnitt aufgeführten Beispielen ist die Beobachtung etwas schwieriger und nimmt viel Zeit in Anspruch, da es sich bei den zu beobachtenden Objekten um mobile Tiere handelt. Da sich Pflanzen an keinem Ort der Welt fortbewegen, sind diese einfacher zu untersuchen und für den Schulunterricht geeigneter. Daher interessieren wir uns in diesem Projekt insbesondere für die Phänologie der Vegetation.

Welche Faktoren beeinflussen die phänologische Entwicklung von Pflanzen?

«Ist Ihnen schon aufgefallen, dass das Laub der Bäume in Ihrer Umgebung zu verschiedenen Zeitpunkten im Frühjahr erscheint oder dass die Pflanzen am Südhang einen anderen Rhythmus haben, als diejenigen am Nordhang, und dass dies nicht alle Jahre gleich ist? Die Bereitschaft auszutreiben, hängt von inneren und äußeren Faktoren ab. Innere Faktoren sind z.B. die genetische Prädisposition oder auch der Gesundheitszustand, äußere die aktuelle Witterung, d.h. lokale Tages- und Nachttemperaturen, der Niederschlag, die Tageslänge (Photoperiodismus), aber auch die Wachstumsbedingungen des Vorjahres oder die Witterungsverhältnisse der Vormonate.

So beginnen in tropischen Gebieten, in denen es immer warm ist und es eine trockene Jahreszeit gibt, viele Pflanzen dann mit dem Wachstum, wenn genügend Feuchtigkeit zur Verfügung steht. In diesen Gebieten wird der Zeitpunkt des Wachstums also durch das Niederschlagsmuster (limitierender Faktor) und nicht durch die Temperatur bestimmt.

Sollten wir über viele Jahre hinweg einen Trend zu wärmeren Temperaturen erkennen und gleichzeitig beobachten, dass das Wachstum im Frühjahr früher beginnt, wäre dies ein deutlicher Hinweis dafür, dass die Wachstumsperiode sich ausdehnt. Wenn wir sowohl die Phänologie als auch das Klima beobachten, können wir diese Hypothese überprüfen und die entsprechenden Zusammenhänge zu verstehen versuchen.

Pflanzenphänologie als Wissenschaft

Die Pflanzenphänologen möchten verstehen, welche Zusammenhänge zwischen der jährlich wechselnden Klimaausträgung und der Vegetation bestehen. Wie reagieren die Pflanzen auf die Klimaschwankungen, auf warme Frühlinge, auf trockene Sommer…? Die Erkenntnisse aus den phänologischen Untersuchungen können vielseitig genutzt werden:
- Prognose von Phänophasen
- Pollenprognose
- Frostwarnungen
- Integrierte Produktion
- Phänokarten
- Informationen
- Erkennen von Schäden in der Biosphäre
- Erkennen der Auswirkungen einer möglichen Klimaänderung auf die Vegetation
Umweltmonitoring

Da die phänologischen Eintrittstermine nebst der Tageslänge stark von der Lufttemperatur beeinflusst werden, sind die phänologischen Daten gute Indikatoren für die Auswirkungen einer möglichen Klimaänderung auf die Vegetation.

Wenn Sie an diesem Projekt teilnehmen, können Sie selbst erforschen, wie die Vegetation auf das Klima reagiert und Sie bieten darüber hinaus wichtige Informationen, die nötig sind, um den globalen Einfluss des Klimas auf die Vegetation zu verstehen.

Pflanzenphänologie der Schweiz

Die folgenden Abschnitte sind der Publikation «Pflanzen im Wandel der Jahreszeiten» (Brügger und Vassella, 2003, GEOGRAPHICA BERNENSIA) entnommen:

«Die Pflanzenphänologie ist eine alte Wissenschaft. Weltweit reichen die ältesten bisher bekannten Reihen bis ins Jahr 812 zurück (Eintritt der Kirschblüte in Kyoto, Japan). Das erste phänologische Beobachtungsnetz in der Schweiz wurde 1760 von der Ökonomischen Gesellschaft Bern ins Leben gerufen. Etwa 100 Jahre später, von 1869 bis 1882, führte die Forstdirektion des Kantons Bern ein phänologisches Beobachtungsprogramm im Wald durch, welches mit Wetterbeobachtungen und Klimamessungen kombiniert war. Der Blattausbruch der Rosskastanie in Genf (seit 1808) und die allgemeine Blüte der Kirsche in Liestal (seit 1894) sind die am weitesten zurück reichenden, heute noch erhobenen phänologischen Daten in der Schweiz.»

Nationale und internationale Netze

Im Schulbereich besteht mit GLOBE ein weltweites Netz, das sich auch an die schon bestehenden wissenschaftlichen Programme einzubinden versucht oder im IPG Internationale Phänologische Gärten sogar schon mitwirkt.
Mögliche Phänologische Beobachtungen im Rahmen von GLOBE

Das Programm GLOBE bietet verschiedene Möglichkeiten an, das Thema Phänologie im Schulunterricht aufzunehmen und zu untersuchen. Folgende Protokolle liegen zur Zeit vor (alle sind Bestandteil des Kapitels Erde als System):

1. Knospung an Bäumen und Sträuchern
2. Knospung und Blattentwicklung (biometrische Messungen des Blattwachstums an Bäumen, Sträuchern oder Gräsern)
3. Blattverfärbung/Blattfall (Bäume, Sträucher und Gräser)
4. Der Phänologische Garten
5. Phänologie des Flieders (allgemeiner Flieder oder Klon)
6. Migrationsmuster von rotkehligen Kolibris (nur für Mexiko, USA, Kanada)
7. Vogelzüge arktischer Vögel
8. Zyklus der Algenvermehrung im Ozean

Sämtliche Protokolle sind unter www.globe.gov zu finden.
Die 3 ersten Protokolle (Nr.1–3) finden Sie in dieser Publikation.
Laubbäume im Wandel der Jahreszeiten

Knospung, Blattentwicklung, Blattverfärbung und Blattfall – Phänologische Beobachtungen im Frühling und Herbst

Im Herbst lassen sich die Blattverfärbungen an einer oder an verschiedenen Arten beobachten. Wann setzt die Verfärbung bei welcher Art ein und wie hängt sie mit den Wetter- und Klimamessungen zusammen? Und wie lange dauert es vom Beginn der Verfärbung hin bis zum Blattfall?

Phänologische Beobachtungsreihen eignen sich auch als Inhalt und Instrument für die Umweltbildung im Unterricht oder als Einstieg ins einfache naturwissenschaftliche Arbeiten.
Beispiel einer durchgehenden Beobachtungsreihe einer GLOBE Schule in Finnland an vier Knospen/Blättern einer Hängebirke.
Und der Klimawandel?

Klimaveränderungen können folgende Effekte bewirken:

Steigen die Temperaturen, ist damit zu rechnen, dass sich die Vegetationsperiode der Waldbäume verlängert. Veränderungen dieser Art wurden in der weiter oben erwähnten NASA Studie nachgewiesen. Entscheidend ist aber auch, dass die verschiedenen Arten auch sehr unterschiedlich auf diese Erwärmungen reagieren. Vermutlich werden sich also langfristige Temperaturveränderungen nicht auf alle Arten gleich auswirken, so dass sich auch die Verhältnisse zwischen den Arten und damit die Artenzusammensetzung unserer Wälder verändern werden. Interessant ist dabei auch, dass innerhalb einer Art jeder Baum anders reagiert. So kann die Vegetationsperiode benachbarter Bäume um gut 20 Tage unterschiedlich lang sein. Diese individuellen Unterschiede können neben der genetischen Prädisposition durch Faktoren wie zum Beispiel die soziale Stellung der Bäume bewirkt werden. Die im Rahmen eines Forschungsprojektes im Jahre 1999 an Buchen durchgeführten Untersuchungen zeigen auf, dass die im Vergleich zu ihren Nachbarn relativ unterdrückten oder beherrschten Bäume eine etwas längere Vegetationsperiode aufweisen als ins Kronendach aufweisende.

Phänologische Beobachtungen im Schulunterricht

Grundsätzliche Anregungen und Denkansätze, Bildungsrelevanz

Die Diskussion um die Folgen eines Klimawandels ist aktuell und betrifft in erster Linie die kommenden Generationen. Es gilt, die Schülerinnen und Schüler im Rahmen eines ganzheitlichen Ansatzes an diese bedeutende Thematik heranzuführen. Die GLOBE Phänologie bietet diesbezüglich Möglichkeiten für alle Schulstufen und eignet sich unter anderem und je nach Schulstufe für das Angehen folgender bildungsrelevanter Ziele:

1. Schulung der Wahrnehmung der eigenen Umwelt, Förderung der Beobachtungsgabe
2. Erkennen von Veränderungen innerhalb eines Jahres und über längere Zeit
3. Auseinandersetzung mit dem Klimawandel (lokal, regional, global)

Aus: Grundschule Sachunterricht, Frühling, 1999

«Weil die Jahreszeiten heute nicht mehr so bewusst wahrgenommen werden wie früher, sollten die Kinder in der Schule Gelegenheit erhalten, die Jahreszeiten intensiv zu erleben, ihre Phänomene zu erkunden und diese Erfahrungen zu gestalten, sowie versuchen, die sachlichen Zusammenhänge in Ansätzen zu fassen. Für höhere Schulstufen eignen sich phänologische Beobachtungen auch als Einstieg in die Thematik des Klimawandels.

Wichtig ist die bewusste Balance der Lehrkraft zwischen Anleitung und Offenlassen. Die Kinder sollen selbst entdecken und vergleichen. Sie benötigen dazu Hinweise und Vergleichsmöglichkeiten, ohne dass ihnen die Entdeckungen in den Mund gelegt werden.

Helfen können dabei Fotos und Zeichnungen, Beschreibungen und Fragen.

Beispiele für vergleichende Beobachtungen:
— Wie sah die Pflanze in der letzten Woche aus?
— Wie sah die Knospe am Montag aus?
— Und wie sieht sie heute aus?
— Wann erscheint die Sonne jetzt?
— Wann erscheint sie nach den Ferien?
Aus: Umwelt und Bildung, Denk- und Praxisanregungen für eine ganzheitliche Natur- und Umwelterziehung, Gerhard Winkel, 1995

Einstieg ins naturwissenschaftliche Denken und Arbeiten

Folgende Texte aus: Martin Wagenschein, Verstehen lehren

«Exposition»

«Das exemplarische Verfahren»
Das Bild der Stufe oder auch der Plattform müssen wir ganz verlassen, wenn wir nun das Exemplarische aufsuchen. Um es gleich vorauszunehmen: Das Einzelne, in das man sich hier versenkt, ist nicht die Stufe, es ist Spiegel des Ganzen.

«Das genetische Prinzip»

Als genetisch bezeichnet man ein Unterrichtsverfahren, das die Erfahrungen, Vorkenntnisse und Überlegungen der Lernenden konstruktiv aufnimmt und zusammen mit ihnen Wege des Entdeckens sucht, um gemeinsam zu gesichertem und verstandenes Wissen zu kommen.

Der Einstieg in das Thema hat die Funktion, die Kinder an ein Phänomen oder eine Aufgabe so heranzuführen, dass sie das Problem erkennen und zum Fragen, Sehen und Nachforschen angeregt werden. Die Erarbeitung einer weiterführenden Einsicht geschieht wesentlich im Gespräch und im erkundenden Handeln, in dessen Rahmen Experimente entworfen und durchgeführt, Vermutungen überprüft, Vorstellungen aufgebaut oder korrigiert und Übereinkünfte hergestellt werden.

Aus: Weltwunder, Kinder als Naturforscher, D. Elschenbroich.
Das französische Programm «La Main à la Pâte», Auszug aus einem Interview mit Prof. Pierre Léna, Astrophysiker

Buche
Fagus sylvatica
Knospung
Was ist Knospung?

Es ist aber auch erwiesen, dass es keinen allgemeingültigen Mechanismus zur Einleitung oder Brechung der Knospenruhe gibt. Jede Pflanzengruppe hat für die Lösung dieses Problems eigene Wege eingeschlagen.
Protokoll Knospung

Aufgabe
Beobachtung der Knospung an einem oder mehreren ausgewählten Bäumen am Messort für Landbedeckung/Biologie oder an einem für Phänologie bestimmten Messort.

Häufigkeit der Beobachtungen
In einem ersten Schritt: Zweimal die Woche, zwei Wochen vor der letztjährigen Knospung beginnend. Sobald die grünen Blätter an einem Ast erscheinen, tägliche Besuche, bis dass die Knospung an mindestens 3 Orten in jedem Baum beobachtet werden kann.

Der ungefähre Zeitpunkt der Knospung für die entsprechenden Baumarten in Ihrer Gegend kann bei Herrn Dr. Claudio Defila (MeteoSchweiz) per Mail erfragt werden: claudio.defila@meteoschweiz.ch

Überblick
Die Knospung ist ein Beispiel für ein phänologisches Ereignis. Die Beobachtungen können dazu herangezogen werden die regionale und globale Verteilung der Vegetation zu ermitteln, die von Jahr zu Jahr auftretenden Änderungen zu erfassen und die Reaktion der Vegetation auf klimatische Veränderungen zu untersuchen.

Am Messort, der für die phänologischen Beobachtungen festgelegt wurde, werden die SchülerInnen ein oder mehrere Bäume auswählen, beobachten und den Zeitpunkt ihrer Knospung bestimmen.

Benötigtes Material
- Feldanleitung zur Einrichtung des Messstandortes Knospung (K1)
- Datenblatt Standortbeschreibung Knospung (K2)
- Feldanleitung für die Beobachtungen der Knospung (K3)
- Datenblatt Beobachtungen der Knospung (K4)
- Globe GPS Anleitung zur Bestimmung der geografischen Lage
- GPS oder Landeskarte 1:25'000 eurer Region
- Binokular
- Bestimmungsbuch für Bäume

Lernziele
Die SchülerInnen lernen,
- die Knospung zu Beginn der Wachstumsperiode zu beobachten.
- die Beziehung zwischen Knospung und Klimafaktoren zu untersuchen.
- die Resultate mit anderen GLOBE Schulen zu diskutieren.
- mit anderen GLOBE Schulen zusammenzuarbeiten.
- ihre Beobachtungen weiterzugeben, indem sie die Daten in die GLOBE Datenbank eingeben.
- Unterschiede in den phänologischen Mustern der verschiedenen Arten zu erkennen.
- den Zeitpunkt der Knospung fürs kommende Jahr zu bestimmen
- die SchülerInnen lernen, nach wissenschaftlichen Anleitungen und Methoden zu arbeiten

Voraussetzungen
Keine

Niveau
Alle
Wer kann und soll das Protokoll Knospung durchführen?

Sie können dieses Protokoll durchführen, wenn Sie in einer geeigneten Gegend leben, d.h. in einem Gebiet, in welchem es Bäume gibt. Sowohl Laub- als auch immergrüne Bäume haben Knospen, also können auch beide Typen für die Beobachtung herangezogen werden. Auch bei Strauch- oder Buschvegetation gibt es phänologische Veränderungen. Wenn Sie in einem tropischen Gebiet leben, mit normalerweise warmem und feuchtem Klima, durchläuft die Vegetation keine grossen Veränderungen im Jahresverlauf. In diesem Fall macht es wenig Sinn, an diesem Projekt teilzunehmen.

Auswahl des Messortes

Da die Ergebnisse der phänologischen Beobachtungen im Zusammenhang mit Temperatur- und Niederschlagsdaten stehen, sollte der Untersuchungsort in der Nähe einer Meteostation liegen. Die örtliche Topographie kann auch Wetterveränderungen in der nahen Umgebung hervorrufen. Dies betrifft insbesondere Bergregionen. In diesen Gebieten sollte der Abstand zwischen den Messorten für Phänologie und Atmosphäre maximal 2km, der Höhenunterschied nicht mehr als 100m betragen. Auf diese Weise können wir die Atmosphärendaten zur Analyse der Knospung heranziehen. Auf keinen Fall darf der Standort für die Phänologie mehr als 500m Höhenunterschied zum Atmosphärenmessort betragen. Liegt der Höhenunterschied zwischen 100m und 500m können die Temperaturwerte eingesetzt werden, wenn sie mit Hilfe eines Korrekturfaktors angeglichen werden.

Der Einfluss des Niederschlags hängt davon ab, auf welcher Seite eines Hügels, eines Gebirges oder Gewässers (Windschatten oder Windseite) sich ein Ort befindet. Da aber der Einfluss des Niederschlags starken Veränderungen unterliegt, ist es schwierig, genaue Korrekturen vorzunehmen. Daher sollten Sie die Messorte für Atmosphäre und Phänologie auf der gleichen Seite eines grossen Hügels, Gebirges oder Sees installieren.

Liegt die Schule in einem flachen, ländlichen Gebiet, wird sich das Wetter lokal nicht so stark ändern und der Untersuchungsort für die phänologischen Beobachtungen kann bis zu 10 Kilometern vom Wetterhäuschen entfernt liegen. In der Nähe von grösseren Städten liegt die Temperatur üblicherweise etwas höher und kann sich auch merklich von Ort zu Ort verändern. Wählen Sie den Untersuchungsort für Phänologie so aus, dass dort etwa die gleichen Bedingungen wie im Bereich der Wetterstation herrschen. Falls dies nicht möglich ist, sollten Sie ein zusätzliches Wetterhäuschen für die Phänologie aufstellen, das geeignete Daten liefert, um die Knospung entsprechend zu untersuchen.
Auswahl eines oder mehrerer Bäume

1. Schritt

Die Bäume sollten einfach zugänglich sein und Sie und Ihre SchülerInnen sollten in der Lage sein, die einzelnen Knospen von Auge zu sehen. Wählen Sie keinen Baum, dessen niedrigste Zweige mehrere Meter über dem Boden liegen. Lässt sich jedoch kein Baum mit niedrigen Zweigen finden, verwenden Sie ein Fernglas, um die Knospen zu untersuchen.

Stirbt ein Baum im Beobachtungszeitraum ab oder wird gefällt, wählen Sie einen anderen Baum der gleichen Art aus und bezeichnen mit einem neuen Namen. Halten Sie die ungefähre Höhe der Zweige und die veränderte Baumauswahl als «Zusatzinformationen» auf dem Server fest.

2. Schritt
Notieren Sie Art und Spezies der ausgewählten Bäume.

Beobachtungsmöglichkeiten:
 Dadurch wird ein Vergleich zwischen den Arten möglich.
4. Die Beobachtung eines einzelnen Baumes oder mehrer Bäume im Schulhausareal. Dies ist nicht sehr repräsentativ, für eine mehrjährige Beobachtungsreihe aber durchaus sinnvoll.
Vorgehen zur Beobachtung der Knospung

1. Da die Knospung jedes Jahr unterschiedlich abläuft, beginnen Sie mit Ihren Beobachtungen **vor dem Durchschnittsdatum der Knospung**. Fragen Sie den Biologielehrer, einen anderen Fachkundigen oder Herrn C. Defila von der Meteo-Schweiz (claudio.defila@meteoschweiz.ch), wann in Ihrer Region dieser Zeitpunkt ungefähr zu erwarten ist. Der Zeitpunkt der Knospung wird durch die geografische Lage des Messorts und durch die Baumart entscheidend beeinflusst. Das Datum muss nicht exakt sein, es geht nur darum, wann im Durchschnitt die Blätter der Bäume in Erscheinung treten und wann somit mit den Beobachtungen begonnen werden muss.

2. Wählen Sie im Frühjahr, mindestens 2 Wochen vor dem Durchschnittsdatum, mit den Schülern und Schülerinnen die Bäume aus, die sie beobachten werden.

Das letzte Beobachtungsdatum vor der Knospung gibt an, wie viel Tage ohne Beobachtung (falls überhaupt Tage fehlen) der Knospung vorangegangen sind. Somit ist der Zeitraum bekannt, in dem die Knospung stattgefunden hat.

Leben Sie in einem Gebiet, in welchem noch Schnee liegt?

Wenn Sie die Frage mit ja beantworten, wird eine weitere Bestimmung für die Analyse Ihrer Knospungsdaten benötigt. Diese Zusatzbestimmung ist schnell und einfach durchzuführen. Es ist die Bestimmung des Wasseraequivalents der Gesamtschneedecke. Derzeit wird bei den Untersuchungen für Atmosphäre/Klima das Wasseraequivalent für festen Niederschlag durchgeführt. Es wird der Neuschnee untersucht. Im Protokoll für die Gesamtschneedecke, messen Sie das Wasseraequivalent der gesamten Schneeseule, d.h. nicht nur des Schnees auf dem Schneebrett, sondern des Schnees bis ganz hinunter zum Erdboden.
Wie verwendet die Wissenschaft diese Daten?

Beobachtungsanleitung zur Knospung

Feldanleitung zur Einrichtung des Messstandortes

Aufgabe
Bestimmung einer oder mehrerer einheimischer Bäume im Blattdach, Bestimmung der Artennamen und der geografischen Lage (Koordinaten der geografische Breite, geografische Länge und der Höhe ü.M.).

Benötigtes Material
- GPS Empfänger oder 1:25'000 Karte eurer Gegend, Messband.
- Globe GPS Anleitung
 Bei der Dateneingabe in die internationale Datenbank immer GPS als Messquelle angeben (auch wenn mit der Landeskarte gearbeitet wurde)!
- GPS Messanleitung und Datenblatt (siehe Anleitung GPS)
- Bestimmungsbuch für Bäume
- Farbiges Klebe- oder Stoffband
- Datenblatt Standortbeschreibung Knospung
- Schreibzeug.

Aufgaben im Feld
1. Fülle den oberen Teil des Blattes Standortbeschreibung Knospung (K2) aus.
2. Bestimme die Koordinaten und die Höhe des Standorts (mit GPS oder mit der Landeskarte 1:25'000).
 Trage die Resultate ins Datenblatt ein (siehe Globe GPS Anleitung).
 Wähle die zu beobachtenden Bäume aus und bestimme deren Gattung- und Artnamen, falls sie nicht zur dominanten Art gehören.
 Markiere die ausgewählten Bäume mit dem farbigen Klebe- oder Stoffband.
Datenblatt Standortbeschreibung Knospung

Name der Schule:

Name der Klasse/Gruppe:

Namen der messenden Schüler/innen:

Datum:

Bezeichnung des Standorts
(Namen des Standorts):

Koordinaten:
Breite: __________ □ N oder □ S (kreuze eines an)
Länge: __________ □ O oder □ W (kreuze eines an)
Höhe: ___________ Meter über Meer

Bestimmung der Koordinaten durch: □ GPS □ Landeskarte
(Bei Dateneingabe in Server: Immer GPS angeben, auch wenn mit Karte bestimmt)

<table>
<thead>
<tr>
<th>Bezeichnung des Baumes oder des Strauchs</th>
<th>Gattung (z.B. Fagus)</th>
<th>Art (z.B. sylvatica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kommentare (Metadata):

1. Befinden sich Bäume und Sträucher unterhalb des Blattdachs?

2. Gibt es an diesem Standort mehr als eine dominante Art? Welche ist die dominante, welche die subdominante?

Andere Kommentare:

Feldanleitung für die Beobachtungen der Knospung

Ziel
Die Knospung an drei Orten auf einem Baum oder mehreren Bäumen zu beobachten (nicht am gleichen Ast!)

Benötigtes Material
- Binokular (freiwillig)
- Datenblatt Knospung (K4)
- Schreibzeug

Aufgaben im Feld

2. Beobachte den Baum oder die Bäume täglich, bis die Knospung an drei verschiedenen Stellen (nicht am gleichen Ast!) im jeweiligen Baum zu sehen ist. Erfasse jeweils das Datum.
Datenblatt Beobachtungen der Knospung

{Name der Schule:}

{Name der Klasse/Gruppe:}

{Namen der messenden Schüler/innen:}

{Datum:}

Bezeichnung des Standorts
(Gib dem Standort einen eigenen Namen):

<table>
<thead>
<tr>
<th>Baum 1:</th>
<th>Baum 2:</th>
<th>Baum 3:</th>
<th>Baum 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>Sind winzige grüne Blätter zu sehen?</td>
<td>Kann die Knospung an mind. 3 Orten im Baum beobachtet werden?</td>
<td>ja/nein</td>
</tr>
<tr>
<td>Datum</td>
<td>Sind winzige grüne Blätter zu sehen?</td>
<td>Kann die Knospung an mind. 3 Orten im Baum beobachtet werden?</td>
<td>ja/nein</td>
</tr>
<tr>
<td>Datum</td>
<td>Sind winzige grüne Blätter zu sehen?</td>
<td>Kann die Knospung an mind. 3 Orten im Baum beobachtet werden?</td>
<td>ja/nein</td>
</tr>
<tr>
<td>Datum</td>
<td>Sind winzige grüne Blätter zu sehen?</td>
<td>Kann die Knospung an mind. 3 Orten im Baum beobachtet werden?</td>
<td>ja/nein</td>
</tr>
<tr>
<td>Datum</td>
<td>Sind winzige grüne Blätter zu sehen?</td>
<td>Kann die Knospung an mind. 3 Orten im Baum beobachtet werden?</td>
<td>ja/nein</td>
</tr>
</tbody>
</table>

Kommentare (Metadata):

K4
Häufig gestellte Fragen zum Protokoll Knospung

Was passiert, wenn der Baum, den ich beobachte, abstirbt oder gefällt wird?
Wenn ein Baum abstirbt oder gefällt wird, wähle einen anderen Baum der gleichen Art aus. Bezeichne den Baum mit einer neuen Nummer. Vermerke diese Änderung als Metadata (zusätzliche Informationen).

Können wir mehr als eine Knospenbeobachtung pro Standort machen?
Ja, solange alle Bäume (also mehr als 2) sich in den 30 m x 30 m des Messstandortes (Biologie) befinden. Sind sie weiter davon entfernt, muss ein neuer Messstandort eingerichtet und die Koordinaten wieder erfasst werden.

Was ist mit «drei verschiedenen Stellen am Baum» gemeint?
Es soll verhindert werden, dass der Zeitpunkt der Knospung durch eine einzelne Knospe bestimmt wird, welche nicht die wirkliche phänologische Entwicklung dieses Baumes repräsentiert. Es soll abgewartet werden, bis die Knospung an 3 Orten im Baum beobachtet werden kann. Das Knospen an einem einzelnen Ast gilt auch nicht. Darüber hinaus ist es nicht wichtig, ob die verschiedenen Äste weit oben oder im Schatten stehen.
Buche
Fagus sylvatica
Blattentwicklung
Was ist Blattentwicklung?

Auch das Wachstum eines Blattes wird durch ein Zusammenwirken von mehreren inneren und äußeren Faktoren gesteuert.

Wichtig als Ausgangslage ist sicherlich eine optimale Nährstoff- und Wasserversorgung des Baumes vor und während der Blattentwicklung.

Die Dauer der Blattentwicklung scheint vorwiegend von der Temperatur und von der Wasserversorgung abhängig zu sein. Fehlende Niederschläge können also limitierender Faktor wirken und das Wachstum vorübergehend hemmen oder sogar lahmlegen.

Wie sich eine Klimaerwärmung auf den Zeitpunkt der Knospung und auf die für die Blattentwicklung benötigte „Zeit“ auswirkt, ist Bestandteil aktueller wissenschaftlicher Untersuchungen.
Protokoll Blattentwicklung

Aufgabe
Beobachtung der pflanzlichen Blattentwicklung und Datenübermittlung. Die Daten werden auch von der Forschung zur Bestätigung und Ergänzung von Satellitenbildern, die das saisonal bedingte Pflanzenwachstum aufzeigen, genutzt. Die ausgewählten Arten sollten häufige und einheimische Laubbäume sein (z.B. Rotbuche, Ahorn, Hasel, Birke…)

Lernziele
Die SchülerInnen lernen,
• die Knospung zu Beginn der Wachstumsperiode zu beobachten.
• wie sich Blätter bis zur vollen Entfaltung entwickeln.
• Baumarten, die in eurer Gegend am häufigsten vorkommen, zu erkennen.
• die Beziehung zwischen Knospung, Blattentfaltung und Klimafaktoren zu untersuchen.
• den Zeitpunkt der Knospung im nächsten Jahr vorauszusagen
• die Wachstumsrate der Blätter verschiedener Arten zu vergleichen.
• die Messresultate mit denen anderer GLOBE Schulen zu vergleichen.
• mit anderen GLOBE Schulen zusammenzuarbeiten.
• ihre Beobachtungen weiterzugeben, indem sie die Daten in die GLOBE Datenbank eingeben.

Stufen
Alle

Häufigkeit
Mindestens zweimal die Woche, ungefähr 2 Wochen vor der erwarteten Knospung beginnend.

Benötigtes Material
- Feldanleitung zum Einrichten des Messstandortes Blattentwicklung (B1)
- Datenblatt Standortbeschreibung Blattentwicklung (B2)
- Feldanleitung für die Messungen Blattentwicklung (B3)
- Datenblatt Blattentwicklung (B4)
- Messband oder Lineal mit mm Markierung
- Klebeband zum Markieren
- Schreibzeug
- Bestimmungsbuch für Bäume
- Kompass
- Kamera
- Rechner (freiwillig)

Vorbereitung
Bestimmt die vorherrschenden Baumarten im Umkreis eures Messortes.
Vorgehen bei der Auswahl des Messortes Blattentwicklung und Blattverfärbung/Blattfall

3. Der Messstandort sollte einfach zu erreichen sein, so dass die SchülerInnen die Messungen 2 bis 3 Mal pro Woche durchführen können. Es ist wichtig, die geografische Lage des Standortes zu bestimmen (siehe Kapitel GPS des Handbuchs).

5. Das Pflanzenwachstum im Frühling und der Blattfall im Herbst, die durch die Satellitenbilder erkannt werden, werden mehrheitlich durch die dominierende Art im Blattdach geprägt. Sollte ihr einem Messstandort «Landbedeckung» bestimmt haben, so wäre euch der Namen dieser entsprechenden Arten also bereits bekannt. Sollte ihr ohne Messstandort «Landbedeckung» arbeiten, wählt eine der drei häufigsten Baumarten aus, die in eurer Gegend die Blattdächer ausmacht. Diese häufigsten Arten können Nadelbäume, Laubbäume oder Sträucher. Für die phänologischen Messungen sollten Laubbäume ausgewählt werden; sind in eurer Gegend die Nadelbäume zu 100% dominant, wählt die Sträucher im Unterholz für die Messungen aus. Sind zum Beispiel an eurem Messstandort zu 90% Nadelbäumen und zu 10% Laubbäume (z.B. Buche) im Kronendach vertreten, so wählt die entsprechende Laubbaumart.

6. Wissenschaftlich ist es interessanter, wenn die Messungen zur Blattentwicklung und zur Blattverfärbung/Blattfall an den gleichen Ästen eines bestimmten Baumes durchgeführt werden. Aber natürlich sind auch Messungen an verschiedenen Orten und an verschiedenen Ästen möglich, wenn dies didaktisch so sinnvoller eingebettet werden kann. Sollten die Messungen «Blattentwicklung» und «Blattverfärbung/Blattfall» an verschiedenen Standorten durchgeführt werden, müsste für beide Orte eine Standortbeschreibung (Koordinaten, etc) gemacht werden.

7. Da eine Veränderung bezüglich Pflanzenwachstum durch eine klimatische Veränderung bedingt sein kann, sollten die Schülerinnen und Schüler immer denselben Messstandort, dieselbe Baumart und möglichst dieselben Äste benutzen, Jahr für Jahr.
Phänologie

Informationen für die Lehrkräfte

Überprüfen Sie, wann ungefähr in Ihrer Region die verschiedenen Baumarten mit der Blattentwicklung beginnen, damit Sie rechtzeitig mit Ihren Beobachtungen beginnen können.

An folgende Adresse können Sie sich wenden, um Informationen einzuholen: Herr Dr. Claudio Defila, MeteoSchweiz, claudio.defila@meteoschweiz.ch.

Häufigkeit der Beobachtungen

In den meisten Gegenden in der Welt findet nur ein Wachstumszyklus pro Jahr statt. Es gibt aber Gegenden, in welchen mehrere Wachstumszyklen stattfinden können. Wegen dieser bestehenden Möglichkeit wird in der Dateneingabe danach gefragt. Wenn nur ein Zyklus existiert, so wird dieser als Zyklus 1 bezeichnet, und dieser beginnt nach dem 1. Januar.

Manchmal dauert die Blattentwicklung länger als das Schuljahr. Wissenschaftlich ist es sehr viel interessanter, wenn die Beobachtungen bis zum Abschluss der Blattentwicklung durchgeführt werden. Es ist deshalb sinnvoll, die Durchführung der Messungen weiterhin zu organisieren (Lehrer, SchülerInnen, Abwart, Eltern...) und abzuschliessen.

Wie wird gemessen?

Für die Beobachtungen der Blattentwicklung ist es wichtig, die Blattlänge vom Blattsansatz bis zur Blattspitze zu messen. Der Blattstiel gehört nicht zur Länge. Es gibt bei den Messungen verschiedene Kategorien, die den jeweiligen Beobachtungen zugeordnet werden können:

- **Ruhend**, wenn die Knospe sich nicht verändert
- **Anschwellend**, wenn die Knospe größer wird
- **Knospung**, wenn die ersten grünen Blätter erscheinen
- **Verloren**, wenn das Blatt aus irgendeinem Grund nicht mehr existiert.

Nach der Knospung und sobald das Blatt voll entfaltet ist, messen die SchülerInnen die Länge (in mm) eines jeden Blattes (biometrische Messung).
Fragen für weiterführende Untersuchungen

1. Gibt es eine Beziehung zwischen der Lufttemperatur und dem Datum der Knospung?
2. Wie beeinflusst das Pflanzenwachstum den Wasserkreislauf im Boden?
3. Welche Tiere (Schmetterlinge, Vögel, Insekten) erscheinen nach der Knospung und Blattentfaltung? Wann und warum?
4. Erfolgt die Knospung in höheren Lagen früher oder später als bei uns? Warum?
5. Erfolgt die Knospung in Binnenländer später oder früher als an Meeresküsten? Warum?

Beispiel eines ausgefüllten Datenblattes

<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 2 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 3 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 4 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>In GLOBE Datenbank eingegeben ja/nein:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. April</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ja</td>
</tr>
<tr>
<td>6. April</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ruhend</td>
<td>ja</td>
</tr>
<tr>
<td>11. April</td>
<td>angeschwollen</td>
<td>angeschwollen</td>
<td>angeschwollen</td>
<td>ruhend</td>
<td>ja</td>
</tr>
<tr>
<td>14. April</td>
<td>Knospung</td>
<td>Knospung</td>
<td>angeschwollen</td>
<td>angeschwollen</td>
<td>ja</td>
</tr>
<tr>
<td>18. April</td>
<td>2</td>
<td>4</td>
<td>Knospung</td>
<td>Knospung</td>
<td>ja</td>
</tr>
<tr>
<td>22. April</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>25. April</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>29. April</td>
<td>20</td>
<td>22</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2. Mai</td>
<td>30</td>
<td>32</td>
<td>25</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>5. Mai</td>
<td>38</td>
<td>verloren</td>
<td>36</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>8. Mai</td>
<td>45</td>
<td>42</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>11. Mai</td>
<td>45</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>14. Mai</td>
<td>45</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Messenleitung Blattentwicklung

Feldenleitung zum Einrichten des Messstandortes

Aufgabe
Bestimmung eines Baumes und Beschreibung der geografischen Lage des Messorts

Benötigtes Material
- GPS Empfänger oder 1:25'000 Karte eurer Gegend, Messband
- Globe GPS Anleitung
 - Bei der Dateneingabe in die internationale Datenbank immer GPS als Messquelle angeben (auch wenn mit der Landeskarte gearbeitet wurde)!
- Bestimmungsbuch für Bäume
- Farbiges Klebe- oder Stoffband, oder sonstige dauerhafte Markierungsmöglichkeiten
- Datenblatt Standortbeschreibung Blattentwicklung (B2)
- Schreibzeug
- Kompass

Aufgaben im Feld
1. Fülle den oberen Teil des Blattes Standortbeschreibung Blattentwicklung aus.
4. Bestimme die Gattung und die Art, indem du mit dem Bestimmungsbuch arbeitest oder eine(n) Fachmann/frau fragst. Trage die Gattung und die Art ins Datenblatt Standortbeschreibung Blattentwicklung ein.
7. Führe eine GPS Messung durch (oder mit der 1:25'000 Karte).
Datenblatt Standortbeschreibung Blattentwicklung

Name der Schule:

Namen der beobachtenden Schüler/innen:

Datum:

Kreuze eines an: □ Neuer Messstandort
 □ Wiederaufnahme

Bezeichnung des Messstandorts

Koordinaten:

Breite: _____________ □ N oder □ S (kreuze eines an)
Länge: _____________ □ O oder □ W (kreuze eines an)
Höhe: _____________ Meter über Meer

Bestimmung der Koordinaten durch: □ GPS □ Landeskarte

Nächster Messstandort «Atmosphäre/Klima»: ATM

Distanz zum Messstandort in Meter: _____________

Richtung zum Messstandort: □ N □ NO □ O □ SO □ S □ SW □ W □ NW

Art des Messstandortes: □ Atmosphäre □ Landbedeckung/Biologie □ Andere
Wenn andere, beschreibe:
Gib für jeden Baum, Strauch oder Grasfläche folgende Informationen an
(die Artbezeichnung muss für die Gräser nicht angegeben werden):

Bezeichnung des Baums
(Name oder Nummer)

Gattung

Art

Geläufiger Name
Feldanleitung für die Messungen zur Blattentwicklung

Aufgabe
Beobachte und erfasse die Blattentwicklung in Bäumen und Sträuchern.

Benötigtes Material
Nur für den ersten Besuch:
- Datenblatt Blattentwicklung (B4)
- Wasserfester Filzstift
- Schreibzeug
- Kamera
- Massstab mit Millimeter-Einheiten
- Kompass

Für jeden Besuch:
- Datenblatt Blattentwicklung (B4)
- Massstab mit Millimeter-Einheiten
- Schreibzeug

Aufgaben im Feld
Beim ersten Besuch:
1. Fülle den oberen Teil deines Datenblattes aus.
3. Bestimme die drei Knospen, die am nächsten bei dieser einen Knospe liegen. Markiere sie mit jeweils 2, 3 oder 4 Punkten.

Mit wasserfestem Filzstift markierte Knospen. Insgesamt werden 4 Knospen an der Spitze eines nach Süden ausgerichteten Astes beobachtet.

Jeder Besuch:
1. Untersuche jede Knospe.
 Schreibe «ruhend», wenn sich die Knospe nicht verändert hat.
 Schreibe «anschwellend» wenn die Knospe sich vergrößert hat.
 Schreibe «Knospung» am ersten Tag, an welchem du grüne kleine Blättchen siehst.
 Schreibe «verloren», wenn die Knospe abstirbt oder aus anderen Gründen nicht weiterwachsen kann.
2. Miss nach jeder Knospung mit einem Massstab die Länge der Blätter.
 Miss nur das Blatt und zähle den Blattstiel nicht dazu.
3. Miss die Blattlänge, bis dass das Blatt nicht mehr weiterwächst.
 Dies kann von einem Blatt zum anderen unterschiedlich sein.
Datenblatt Messungen Blattentwicklung

Name der Schule:

Name der Klasse/Gruppe:

Namen der Beobachter/innen:

Datum:

Bezeichnung des Standorts
(Gib dem Standort einen eigenen Namen):

Wissenschaftlicher Name des Baumes oder Strauches:

Gattung:
Art:

Geläufiger Name:

Wachstumszyklus:
Jahr:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 2 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 3 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 4 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>In GLOBE Datenbank eingegeben: ja/nein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Rückseite Datenblatt Messungen Blattentwicklung B4)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 2 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 3 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>Blatt 4 (ruhend, anschwellend, Knospung, Länge (mm), verloren)</th>
<th>In GLOBE Datenbank eingegeben: ja/nein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Überprüfe die Übertragung in die GLOBE Datenbank (letzte Kolonne der Tabelle).

Kommentar (mit Datum):

__
__
__
__
__
__
__
Häufig gestellte Fragen zum Protokoll Blattentwicklung

Wird der wasserfeste Filzstift die Knospen schädigen?
Markiere nicht die Knospe selbst, sondern den Holzteil dahinter. So wird die Knospe nicht beeinträchtigt.

Welcher Ast ist geeignet?
Jeder Ast sollte gesund und kräftig sein, insbesondere im Vergleich zu den anderen Ästen im Baum. Da der Ast möglicherweise auch nächstes Jahr beobachtet wird, sollte er beim Markieren und Beobachten nicht beschädigt werden.

Was geschieht, wenn ein Ast während der Beobachtungen abbricht?
Führe deine Beobachtungen mit anderen SchülerInnen weiter und beobachte deren Ast.

Werden alle Knospen zur gleichen Zeit anschwellen?
Nein, gewisse Knospen auf deinem Ast werden nicht am gleichen Tag knospen wie die Knospen an der Spitze des Astes.

Sollen immer dieselben Knospen beobachtet werden, Jahr für Jahr?
Ihr solltet denselben Ast beobachten, der ja jedes Jahr neue Knospen bilden wird.

Was ist, wenn die vorherrschenden Baumarten Nadelbäume sind?
Es können Laubbäume oder Stäucher im Unterholz für die Messungen eingesetzt werden. Meistens werden auf den Satellitenbildern die Blattentwicklung der Laubbäume beobachtet, das Wachstum der Nadelbäume ist schleichend und nicht einfach zu beobachten.

Was geschieht, wenn nach der Knospung mehrere Blätter aus einer einzelnen Knospe spriessen?
Wähle ein Blatt und markiere es mit einem wasserfesten Filzstift. Führe die Messungen immer an diesem Blatt durch.

Wie lange wird es dauern, bis dass ein Blatt voll entwickelt hat?
Dies ist sehr unterschiedlich. Es kann von einer Woche in Alaska, wo während der Wachstumsperiode das Sonnenlicht während 18 Stunden auf die Pflanzen wirkt, bis zu einem Monat dauern.
Was sind Blattverfärbung und Blattfall?

Jedes Jahr im Herbst beobachten wir die Blattverfärbung und den Blattfall bei den Laubbäumen. Wie läuft dieser Vorgang ab?

Die Blattverfärbung und der Blattfall sind Anpassungen der Laubbäume an die kalte Jahreszeit, die im Herbst bei uns beginnt. In den Erbanlagen der sommergrünen Laubbäume ist festgelegt, dass sie auf die Verkürzung der Tageslänge und die Abnahme der Temperatur sowie der Feuchtigkeit im Boden reagieren.

Die Blattverfärbung schreitet dabei meist vom Blattrand nach innen zu den Blattnerven, durch die die Abbauprodukte in den Spross gelangen.

Zusammenfassend wird die Blattfarbe also folgendermassen bestimmt:

1. Der Grad des Chlorophyllabbaus bestimmt den Grünwert.
2. Carotinoide werden im Sommer von den Chlorophyllen überdeckt und werden nicht so schnell abgebaut. Sie bestimmen die Gelbfärbung der Herbstblätter.

Der Blattfall wird durch Pflanzenhormone gesteuert. Es kommt zu Veränderungen der Zellen, die in einer speziellen Trennzone quer durch die Basis des Blattstiels verläuft.

Während der ersten Frostnächte im Herbst wird der Prozess der Blattablösung gefördert. Bei Windeinwirkungen durch die Herbststürme brechen die noch bestehenden Zellverbindungen ab, das Blatt fällt ab. Die dabei entstehende Wunde überzieht sich mit einer Schutzschicht aus wasser- und luftundurchlässigem Korkgewebe.

Wenn die Blätter fallen, hat der Baum schon die neuen Knospen in den Blattachsen angelegt, so dass sie im nächsten Frühjahr austreiben können.
Protokoll Blattverfärbung/Blattfall

Aufgabe

Lernziele
Die SchülerInnen lernen,
- die Blattverfärbung am Ende der Wachstumsperiode zu beobachten.
- die Farben der Blätter mit den Farben im offiziellen GLOBE Führer «Pflanzenfarben» zu vergleichen.
- die einheimischen Bäume zu erkennen.
- die Zusammenhänge zwischen Blattfall und Klimafaktoren zu erkennen.
- das Ende der Wachstumsperiode für das folgende Jahr ungefähr vorauszusagen.
- die Farbveränderungen verschiedener Pflanzen zu vergleichen.
- die Messresultate mit denen anderer GLOBE Schulen zu vergleichen.
- mit anderen GLOBE Schulen (national und international) zusammenzuarbeiten.
- ihre Beobachtungen weiterzugeben, indem sie die Daten in die GLOBE Datenbank eingeben.

Stufen
Alle

Häufigkeit
Mindestens zweimal die Woche, ungefähr 2 Wochen vor der erwarteten Blattverfärbung beginnend. Weiterführung, bis dass die Blattverfärbung abgeschlossen ist oder bis dass die entsprechenden Blätter gefallen sind. Wir empfehlen, ab Mitte September mit den Beobachtungen zu beginnen.

Benötigtes Material
- Feldanleitung zum Einsrichten des Messestandortes Blattverfärbung / Blattfall (V1)
- Datenblatt Standortbeschreibung Blattverfärbung / Blattfall (V2)
- Feldanleitung für die Beobachtungen der Blattverfärbung / Blattfall (V3)
- Datenblatt Blattverfärbung / Blattfall (V4)
- Messband oder Lineal mit mm Markierung
- Klebeband zum Markieren
- Schreibzeug
- Bestimmungsbuch für Bäume
- Kompass
- Kamera
- Rechner (freiwillig)

Vorbereitung
Bestimmt die vorherrschenden Baumarten im Umkreis eures Messortes.

Vorgehen bei der Auswahl des Messortes Blattverfärbung/Blattfall:
siehe Protokoll Blattentwicklung
Informationen für die Lehrkräfte

Häufigkeit der Beobachtungen
In den meisten Gegenden in der Welt findet nur ein Wachstumszyklus statt. Es gibt aber Gegenden, in welchen mehrere Wachstumszyklen stattfinden können. Wegen dieser bestehenden Möglichkeit wird in der Dateneingabe danach gefragt. Wenn nur ein Zyklus existiert, so wird dieser als Zyklus 1 bezeichnet, und dieser beginnt nach dem 1. Januar.

Wie wird gemessen?

Fragen für weiterführende Untersuchungen

— Welche Tiere (Schmetterlinge, Singvögel, etc.) verschwinden nach dem Einsetzen der Blattverfärbung/Blattfalls? Wann, weshalb?
— Setzt die Blattverfärbung/Blattfall in höheren Lagen früher oder später ein?
— Weshalb?
— Setzt die Blattverfärbung/Blattfall in Binnenländern später oder früher als in küstennahen Gebieten ein? Weshalb?
— Wie beeinflussen das am Boden liegende Laubmengen die Bodeneigenschaften, die Nährstoffkreisläufe, die Wasserspeicherkapazität und die Farbe des Bodens?
— Wo lassen sich Informationen hierzu finden? Weshalb sind diese Fragen von Bedeutung?

Beispiel eines ausgefüllten Datenblattes

<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 2 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 3 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 4 (Farbe, gefallen, schneebedeckt)</th>
<th>In GLOBE Datenbank eingegeben: ja/nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. September</td>
<td>5 G 7/4</td>
<td>5 G 7/4</td>
<td>5 G 7/4</td>
<td>5 G 7/4</td>
<td>ja</td>
</tr>
<tr>
<td>3. Oktober</td>
<td>5 G 7/4</td>
<td>5 G 7/4</td>
<td>5 G 7/4</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>7. Oktober</td>
<td>5 G 7/4</td>
<td>2.5 Y 8/6</td>
<td>5 G 7/4</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>11. Oktober</td>
<td>5 G 7/4</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>14. Oktober</td>
<td>5 G 7/4</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>17. Oktober</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>20. Oktober</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>23. Oktober</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>27. Oktober</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>ja</td>
</tr>
<tr>
<td>30. Oktober</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>2.5 Y 8/6</td>
<td>gefallen</td>
</tr>
<tr>
<td>4. November</td>
<td>2.5 Y 8/6</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>6. November</td>
<td>2.5 Y 8/6</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>11. November</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>14. November</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>17. November</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>22. November</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>29. November</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>7.5 YR 6/4</td>
<td>gefallen</td>
</tr>
<tr>
<td>2. Dezember</td>
<td>schneebedeckt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Messenleitung Blattverfärbung/Blattfall

Feldanleitung zum Einrichten des Messstandortes

Aufgabe
Bestimmung eines Baumes und Beschreibung der geografischen Lage des Messorts

Benötigtes Material
- GPS Empfänger oder 1:25'000 Karte eurer Gegend, Messband.
- Globe GPS Anleitung
 Bei der Dateneingabe in die internationale Datenbank immer GPS als Messquelle angeben (auch wenn mit der Landeskarte gearbeitet wurde)!
- Bestimmungsbuch für Bäume
- Farbiges Klebe- oder Stoffband, oder sonstige dauerhafte Markierungsmöglichkeiten
- Datenblatt Standortbeschreibung Blattverfärbung/Blattfall (V2)
- Schreibzeug
- Kompass

Im Feld
1. Fülle den oberen Teil des Blattes Standortbeschreibung Blattverfärbung/Blattfall aus.
4. Bestimme die Gattung und die Art, indem du mit einem Bestimmungsbuch arbeitest oder eine(n) Fachmann/frau fragst. Trage die Gattung und die Art ins Datenblatt Standortbeschreibung Blattverfärbung/Blattfall (V2) ein.
6. Führe eine GPS Messung durch (oder mit einer 1:25'000er Karte eurer Gegend).
Standortbeschreibung Blattverfärbung/Blattfall

Name der Schule:

Namen der Klasse/Gruppe:

Namen der beobachtenden Schüler/innen:

Datum:

Kreuze eines an: □ Neuer Messstandort □ Wiederaufnahme

Koordinaten:

Breite: _______________ □ N oder □ S (kreuze eines an)

Länge: _______________ □ O oder □ W (kreuze eines an)

Höhe: _______________ Meter über Meer

Messquelle: □ GPS □ Landeskarte

Bei der Dateneingabe in den Server immer GPS angeben, auch wenn mit der Karte gerarbeitet wurde.

Nächster Messstandort «Atmosphäre/Klima»: ATM

Distanz zum Messstandort in Meter: ________________

Richtung zum Messstandort: □ N □ NE □ O □ SOE □ S □ SW □ W □ NW

Art des Messstandortes: □ Atmosphäre □ Landbedeckung/Biologie □ Andere

Wenn andere, beschreibe:

Gib für jeden Baum, Strauch oder Grasfläche folgende Informationen an
(die Artbezeichnung muss für die Gräser **nicht** gegeben werden):

Gib für jeden Baum, Strauch oder Grasfläche folgende Informationen an
(die Artbezeichnung muss für die Gräser **nicht** gegeben werden):

Bezeichnung des Baums
(Name oder Nummer)

Gattung

Art

Geläufiger Name
Feldanleitung für die Beobachtungen Blattverfärbung/Blattfall

Aufgabe
Beobachte und beschreibe die Blattverfärbung und den Blattfall an Bäumen und Sträuchern

Was ihr braucht
Nur für den ersten Besuch:
☐ Datenblatt Blattverfärbung/Blattfall (V4)
☐ Schreibzeug
☐ Kamera
☐ Wasserfester Filzstift
☐ Kompass

Für jeden Besuch:
☐ Datenblatt Blattverfärbung/Blattfall (V4)
☐ GLOBE Führer Pflanzenfarben
☐ Schreibzeug

Aufgaben im Feld
Beim ersten Besuch:
1. Fülle den oberen Teil deines Datenblattes aus.
3. Bestimme die drei nächsten Blätter, die am nächsten bei diesem einen Blatt liegen. Markiere sie mit jeweils 2, 3 oder 4 Punkten.

Für jeden Besuch:
2. Notiere deine Beobachtungen ins Datenblatt.
5. Notiere die Farbe, bis dass sich die Farbe nicht mehr verändert.

Häufig gestellte Fragen zu Blattverfärbung/Blattfall:

Sollen für die Messungen Blattverfärbungen/Blattfall dieselben Äste wie für die Untersuchungen Blattentwicklung benutzt werden?
Wenn möglich ja. Sollten andere Bäume oder Sträucher benutzt werden, versucht möglichst, die gleiche Art zu finden und zu untersuchen. Werden die Messungen an einem anderen Standort durchgeführt, muss eine neue Standortbeschreibung gemacht werden.
Datenblatt Blattfall/Blattentwicklung

Name der Schule:

Name der Klasse/Gruppe:

Namen der Beobachter/innen:

Datum:

Name des Messstandorts:

Wissenschaftlicher Name des Baumes oder Strauches:

Gattung: Art:

Geläufiger Name:

Wachstumszyklus: Jahr:
<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 2 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 3 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 4 (Farbe, gefallen, schneebedeckt)</th>
<th>In GLOBE Datenbank eingegeben: ja/nein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Datenblatt Blattfall/Blattentwicklung V4)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Blatt 1 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 2 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 3 (Farbe, gefallen, schneebedeckt)</th>
<th>Blatt 4 (Farbe, gefallen, schneebedeckt)</th>
<th>In GLOBE Datenbank eingegeben: ja/nein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literaturangaben

Sachunterricht Grundschule, Frühling, 1/1999, Kallmeyer Verlag.

Sachunterricht Grundschule, Pflanzen, 19/2003, Kallmeyer Verlag.

Verstehen lehren, Martin Wagenschein. 1999, Beltz Taschenbücher. ISBN 3-407-22022-7
SMS und E-Mails mit Ökostrom aus Sonnen-, Wind- und Wasserenergie

Mehr zu den Umweltaktivitäten von Swisscom: www.swisscom.ch/umwelt
GLOBE Global Learning and Observations to Benefit the Environment

GLOBE vernetzt viele tausend Schulen aus aller Welt über das Internet. Das Programm verknüpft Bildung und Forschung im Bereich Umwelt. Bobachten, messen, Daten sammeln, ins Internet eingeben und vergleichen: GLOBE ist ein Schulprojekt für alle Stufen.

www.globe-swiss.ch